40 research outputs found

    Empirical Mathematical Model of Microprocessor Sensitivity and Early Prediction to Proton and Neutron Radiation-Induced Soft Errors

    Get PDF
    A mathematical model is described to predict microprocessor fault tolerance under radiation. The model is empirically trained by combining data from simulated fault-injection campaigns and radiation experiments, both with protons (at the National Center of Accelerators (CNA) facilities, Seville, Spain) and neutrons [at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research Facility at Los Alamos, USA]. The sensitivity to soft errors of different blocks of commercial processors is identified to estimate the reliability of a set of programs that had previously been optimized, hardened, or both. The results showed a standard error under 0.1, in the case of the Advanced RISC Machines (ARM) processor, and 0.12, in the case of the MSP430 microcontroller.This work was supported in part by Spanish MINECO under Project ESP-2015-68245-C4-3-P and Project ESP-2015-68245-C4-4-P

    A Hardware-Software Approach for On-Line Soft Error Mitigation in Interrupt-Driven Applications

    Get PDF
    Integrity assurance of configuration data has a significant impact on microcontroller-based systems reliability. This is especially true when running applications driven by events which behavior is tightly coupled to this kind of data. This work proposes a new hybrid technique that combines hardware and software resources for detecting and recovering soft-errors in system configuration data. Our approach is based on the utilization of a common built-in microcontroller resource (timer) that works jointly with a software-based technique, which is responsible to periodically refresh the configuration data. The experiments demonstrate that non-destructive single event effects can be effectively mitigated with reduced overheads. Results show an important increase in fault coverage for SEUs and SETs, about one order of magnitude.This work was funded in part by the Spanish Ministry of Education, Culture and Sports with the project “Developing hybrid fault tolerance techniques for embedded microprocessors” (PHB2012–0158-PC)

    A Compact Model to Evaluate the Effects of High Level C++ Code Hardening in Radiation Environments

    Get PDF
    A high-level C++ hardening library is designed for the protection of critical software against the harmful effects of radiation environments that can damage systems. A mathematical and empirical model to predict system behavior in the presence of radiation induced faults is also presented. This model generates a quick evaluation and adjustment of several reliability vs. performance trade-offs, to optimize radiation hardening based on the proposed C++ hardening library. Several simulations and irradiation campaigns with protons and neutrons are used to build the model and to tune it. Finally, the effects of our hardening approach are compared with other hardened and non-hardened approaches.This work was funded by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund through the following projects: ‘Evaluación temprana de los efectos de radiación mediante simulación y virtualización. Estrategias de mitigación en arquitecturas de microprocesadores avanzados’ and ‘Centro de Ensayos Combinados de Irradiación’, (Refs: ESP2015-68245-C4-3-P and ESP2015-68245-C4-4-P, MINECO/FEDER, UE)
    corecore